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ANGL;E-OF-A'EACK CONVERGENCE OF SPINNING BODIES 

ENTERING PLANETARY  ATMOSPHERES AT LARGE 

, INCLINATIONS TO THE FZIGHT PATH 

By Murray Tobak and Victor L. Peterson 

Ames Research  Center 
Moffett  Field, Calif. 

SUMMARY 

An analysis  i s  made o f  the  angle-of-attack  history  of a spinning body 
entering a planetary atmosphere a t  an a r b i t r a r i l y   l a r g e   i n c l i n a t i o n   t o   t h e  
f l igh t   pa th .  An asymptotic  solution  for  the  resultant  angle of a t tack  i s  
derived,  applicable t o  any  axial ly  symmetric  body  having  an  aerodynamic 
restoring-moment coeff ic ient   proport ional   to   the  s ine of  the  resul tant   angle  
o f  a t tack.  The so lu t ion   y ie lds   resu l t s   in   sa t i s fac tory  agreement  with r e su l t s  
obtained from numerical  integrations of the  exact  equations o f  motion. 

INTRODUCTION 

In  a recent  analysis of the  atmospheric-entry dynamics of  spheroidal 
t e k t i t e s   ( r e f .  l), the  authors were l e d  t o  study  the motions  of a spinning 
body entering  the atmosphere a t  an a r b i t r a r i l y   l a r g e   i n c l i n a t i o n   t o  the f l i g h t  
path. An expression f o r  t he   h i s to ry  of the  angle-of-attack  envelope i s  
offered  without  proof  in  reference 1 as  a generalization of a usefu l   resu l t  
given  previously  by Leon in   reference 2. The general izat ion  re ta ins   the 
concise form o f  the  or iginal   while  removing the   r e s t r i c t ion  t o  small i n i t i a l  
inclinations;  it i s  applicable t o  the  motion  of  any ax ia l ly  symmetric  body 
having  an  aerodynamic  restoring-moment coefficient  proportional t o  the   s ine  
of  the  resultant  angle of  a t tack.  

Vehicles  destined  for  use as planetary  probes no doubt often w i l l  be 
spin-stabilized  and, moreover, of ten w i l l  have prof i les   der ivable  from t h a t  
o f  the  spheroid. For  such prof i les ,   the  aerodynamic  restoring-moment coeff i -  
c ien t  w i l l  be  reasonably  well  approximated  by a function  proportional t o  the  
s ine of the  angle o f  a t tack.  Hence, the  expression  der ived  ini t ia l ly  t o  
explain  the  motions  of  tekti tes may app ly   d i r ec t ly   t o   t he  motions  of  probe 
vehicles as well.  In  view of  th is ,  it i s  deemed advisable  to  present  here a 
complete derivation and evaluation o f  the   resu l t   c i ted   in   re fe rence  1. 

In  connection w i t h  the  nonlinear  problem'cons-idered  here, two antecedent 
papers, unknown to  the  authors  during  the  preparation  of  this  report ,   should 
a l s o  be cited.=  Reference 3 contains a derivation of the  nonlinear 

?he  authors  are  indebted t o  Mr. Percy J. Bobbitt   for  bringing  these 
papers t o  t he i r   a t t en t ion .  
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differential  equation  governing  the  angle-of-attack motion; the  ensuing 
analysis ,  however, i s  devoted to  the  frequency and precession  ra te  of the 
motion rather  than  the  angle-of-attack  envelope  studied  here.  Reference 4 i s  
addressed t o   t h e  same problem as that   of   the   present   report ,   but   the   analysis  
does  not   lead  to  a solution  having  the  concise  functional form of  the one 
presented  here. 

SYMBOLS 

reference  area 

restoring-moment coeff ic ient ,  res tor ing moment 
w2 

dependent  variable,  tan - 0 2 
parameter  defined  by  equation (46) 

a l t  it ude 

moment of   iner t ia   about   x '  o r  y '   axis  

moment of   iner t ia   about   z '   axis  

f i  
Bessel  functions  of  imaginary  order 

reference  length 

magnitude  of  aerodynamic moment vector 

angular  velocit ies  about z l ,  x', y'   axes,   respectively 

dynamic pressure, - pV2 1 
2 

dynamic pressure  parameter, P V i  s i n  yi 

time 

f l i g h t   v e l o c i t y  

axes  having  fixed  directions  in  space,  origin a t  center of  
gravity  of body (sketch  (a)  ) 

independent  variable  (eq. (20) )  

axes  f ixed  in body, or ig in  a t  center o f  gravity  (sketch (a)) 

dependent  variable  (eq. (31 ) ) 

angle o f  a t tack  in   planar  motion 

density  parameter  (eq. (13))  

f l ight-path  angle 
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value of  x a t  t = 0, - Qi cmmaX J;." AZ 

I,' - I 
I 

spin  parameter, - - P i  1,s 
S I  

modified  spin  parameter, Y cos - 2 U i  

2 

dependent var iable ,  - 
f i 

f 

densi ty  o f  planetary atmosphere 

densi ty  of planetary atmosphere a t   su r f ace  of  planet 

Eulerian  angles, w i t h  CT measuring resultant  angle of  a t tack  
(sketch (a)  ) 

complex angular  velocity,  q + i r  

d 
d t  - 4 )  

i n i t i a l   v a l u e  

complex conjugate  of  quantity 

maximum value of  quant i ty  

minimum value of  quant i ty  

envelope of  osci l la tory  funct ion 

ANALYSIS 

The following  assumptions  and  approximations,  comon to   references 1 and 
2, are  retained  in  the  ensuing  analysis:  

(a)  Rotation o f  planet and  atmosphere are  neglected.  

(b )  Aerodynamic damping terms  are  neglected, so t ha t   t he  aerodynamic 
moment coef f ic ien t  i s  proportional t o  resultant  angle of  a t tack  
only. 
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(e)  Flight-path  angle y and ve loc i ty  V remain  constant a t  t h e i r  
i n i t i a l   v a l u e s  y i  and V i .  

Assumption ( e )  limits appl icabi l i ty   o f   the   ana lys i s  t o  t h e   i n i t i a l   p o r t i o n  o f  
the  entry  during which the  dynamic pressure  increases  rapidly w i t h  t ime. It 
w i l l  be seen,  however, t ha t  t he  end r e s u l t s  can  be cas t   i n  a form which 
circumvents t h i s  l imi t a t ion .  

A s  assumption  (e)  serves  to  define  the  motion  of  the  center  of  gravity, 
only  the  motion  of  the body about  the  center  of  gravity need  be  considered. 
To t h i s  end, two orthogonal  coordinate  systems  are  affixed  to  the  center  of 
grav i ty  as shown  on sketch ( a )  . The 

2 

Z Fl lght  path  dlrect lon 

z' Body axts of rotatton 

u Resultant  angle of at tack 

Sketch ( a )  

X,  Y, Z axes  are  reference  axes  having 
f ixed   d i rec t ions   in   space ,   the  Z 
axis being  alined  with  the  direction 
of  the  velocity  vector.  The x ' ,   y ' ,  
z '  axes  are  principal  axes  f ixed  in 
the body, the  z '   axis  being  coinci-  
dent w i t h  the  body's  longitudinal  axis.  
The body has   cyl indrical  symmetry 
about  the z '  axis  so that,   with  prod- 
ucts   of   iner t ia   absent ,  Ix' = Iy' = I. 
The body axes   a re   o r ien ted   re la t ive   to  
the  reference  axes  by  the  Eulerian 
angles cp, +, 0, with u measuring 
the  resul tant   angle   of   a t tack.  By 
assumption  (b)  and symmetry the  aero- 
dynamic force on the  body l i e s   i n   t h e  
(5 plane. Hence, the aerodynamic 
moment about  the  center  of  gravity i s  
a vector   directed normal t o   t h e  u 
plane,  or  along  the  line  of  nodes. 
Let  p, q,  r be  the components of 
angular  velocity  about  the z ' ,  x ' ,   y '  
axes,   respectively.  The equations of 
motion a r e   ( r e f .  3 )  

I,' fi = 0 

where M(u)  i s  the magnitude  of  the  aerodynamic moment vector and where the 
r e l a t ions  between p,  q, r and the   Euler ian   angles   a re   ( re f .  3 )  

\ 

p = ? p c o s a + $  

q = C, s i n  u s i n  IJJ + 3 cos + 
r = ?p s i n  u cos + - 6 s i n  

> 
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The first of equations (1) integrates  immediately, showing that the  roll r a t e  
p remains  constant a t  pi. The  two remaining  equations are combined by  the 
formation o f  a complex angular  rate w, 

w = q + i r  (3) 

t o   g ive  

where 

= Iz' - 1 
I 

Another expression  for w i s  obtained from equations (2), namely 

Equation (6) and i t s  der ivat ive may be  substi tuted  in  equation (4)  to   e l imi-  
nate w. There r e s u l t s  a complex equation which may be  broken in to   t he  two 
real   equations 

Consider  equation ( D ) .  From equations ( 2 )  

Api + lif = P i ( A  + 1) - 4 cos 5 ( 8 )  

Substituting  equation (8) in   (7b)  and multiplying  through  by  sin u gives 

- (6 sin2 5) =  pi(^ + 1) a cos 5 d 
d t  at (9) 

which m y  be in tegra ted   to   y ie ld  

where t h e   i n i t i a l   c o n d i t i o n  ?pi = 0 has  been  invoked. The la t te r  condition 
i s  cons is ten t   wi th   the   spec i f ica t ion   tha t   in i t ia l ly   the  body ax i s  z '  have a 
fixed  direction  with  respect  to  space-fixed  coordinates.  On the   subs t i tu t ion  
of equations (8) and (10) i n  (7a) and some manipulation, a d i f f e r e n t i a l  
equation  for 5 alone is obtained  of  the  following form 

5 



A t  t h i s   po in t ,   t he  aerodynamic  pitching-moment coeff ic ient  &(a) i s  specified 
t o  be proportional t o  the  s ine of the  resultant  angle  of  at tack;  that  i s ,  

Further, as in   references 1 and 2 ,  the  assumption  that  the  density of the  
planetary atmosphere var ies   exponent ia l ly   with  a l t i tude i s  introduced 

P = p0e - Ph (13) 

which, together w i t h  assumption (c ) ,   g ives   for   the  dynamic pressure 

Q = QieSt (14) 

where 

L e t  

so t ha t  

Also, l e t  

s = @Vi s i n  yi  i 

Equation (11) becomes 
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Finally,  in  conformity  with  reference 1, the  new independent  variable x is  
introduced 

x = tce S t / 2  

together  with  the  transformation 

which bring  equation (19) t o  

F ix ing   t he   i n i t i a l   i nc l ina t ion  of the  body z '   axis  with  respect  to  space- 
f ixed  coordinates   requires   that   the   ini t ia l   condi t ions on f be 

Asymptotic  Solution 

An asymptotic  solution  of  equation  (22) w i l l  be  obtained  in a manner 
s imi l a r   t o   t ha t  of  reference 1. Fi rs t ,   l e t   us   normal ize   the  dependent 
variable  by 

" - 5  
f i 

and rearrange  the  differential   equation so that  

5 '  6" + -  + 5 - 
4 

X 

( 2 9  

Equation ( 2 5 )  reveals that  for small f i ( i .e., small oi )  , the   r igh t   s ide  
becomes negl igibly small and may be  put to   zero .  The result ing  equation can 
be  solved  exactly.  This is  the problem t rea ted   in   re fe rence   2 .  For l a rge r  - 
values  of f i ,  an  exact  solution  cannot  be  obtained. It can  be shown, 
however, t ha t   fo r   l a rge  x, the  leading terms on the   r igh t   s ide  w i l l  d ie   out  
as x-3/2  whereas  those on t h e   l e f t   s i d e  w i l l  d ie   out  as x-lI2. Hence, the  
l e f t   s i d e  of  equation  (25) w i l l  govern  the  asymptotic  behavior  of  the  solu- 
t i on .  Note that ,   wi th  f i  d i f f e ren t  from zero,  the  spin  parameter v on 
t h e   l e f t   s i d e  i s  now modified  by a factor  dependent on i n i t i a l   i n c l i n a t i o n .  - 
Let  the  modified  spin  parameter  be  denoted  by T where 
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and, f o r   b r e v i t y ,   l e t  

so that  equation  (23) becomes 

where 

Forming the complex function 

and  adding in   equat ions  (29)gives  a single  equation 

y" + $ (1 - 2 i ~ )  + y = gl(x>  (32)  

with 

g,(x) = ig(x)e-ip ( 3 3 )  

Having a solution f o r  y, one obtains  the  desired  solution f o r  E 2  simply  by 
forming the  conjugate  solution 7 and multiplying, f o r  by  equations ( 3 0 )  and 

Asymptotic  behavior.- The form  of the   l e f t   s ide   o f   equa t ion   (32)  
suggests  that   the  behavior  of y w i l l  be similar t o   t h a t  of  the  Bessel 
function  of  imaginary  order J - i v ( X )  . To put   this   in   evidence,   the  method of 
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variation  of  parameters i s  used to   cast   equat ion (32) i n   t h e  form  of an 
integral  equation  involving  the Bessel function. Thus, when t h e   i n i t i a l  
conditions  of  equations  (23) are invoked, 

with 

r = i v  
- 

For small f i  t he   i n t eg ra l  may be  discarded  and  the  solution w i l l  be  simply 
the  f irst  term. For a r b i t r a r y  fi, the  asymptotic  behavior  of  equation ( 3 5 )  
i s  obtained as follows: Write  equation ( 3 5 )  as 

00 

M 

The second integral   vanishes   fas ter   than x-1/2 for x 4 03 and  hence may be 
discarded. Then the  asymptotic  behavior  of  y(x) i s  

where 
00 

The asymptotic  behavior  of  the  conjugate  solution is  

9 



so t h a t  5 2  varies  asymptotically as 

E2 (ala1 + b l b d  J r ( X > J - r ( X )  + alblJ-, (X)  + alblJr'(x) 
- 

- 2  (39) 

A more convenient form f o r  e2 i s  obtained when the  expression i s  normalized 
with  respect   to   the  solut ion  for  small f i .  Thus 

w i t h  

Then 

Since 

equation (43) becomes 

The quant i ty   in   brackets  i s  a posi t ive  osci l la tory  funct ion of constant 
amplitude,  varying  within  the limits tanh2 nV/2 and uni ty .  Now consider 
the  quantity  in  brackets  in  equation (40) .  When the  Bessel  functions  are 
replaced  by  equations (41), the  convergence f ac to r  (x2 + 52)-l'" i s  seen  to 
occur  in  both  the  numerator and  denominator  of the second  term. Hence, t h i s  
factor  cancels,  so t ha t   t he   quan t i ty   i n   b racke t s   a l so  i s  a posi t ive  osci l la-  
tory  funct ion of constant  amplitude.  Let 

10 



As each  factor  in  equation (46) i s  a posit ive  oscil latory  function  of  constant 
amplitude , so i s  their   product  .2 Equation (46) revea ls   tha t   there  w i l l  be two 
positive  envelope  curves  for 5 ,  a maximum and a minimum. This is as it 
should  be: The resultant  angle of a t tack  u i s  always posit ive;  when it i s  
a l so   osc i l la tory ,  it i s  c l ea r   t ha t   t he re  must be a positive  lower bound t o  
the   o sc i l l a t ion  as w e l l  as an upper  one. F’rom equations (45) and (46), the  
envelope  curves  take  the  form 

It remains t o  determine  the  parameters Gmx and Gmin. This must be done 
numerically, and sketch  (b)  indicates  the  appropriate  procedure. The exact 
var ia t ion  of  5 with x i s  obtained 
from numerical  integration of  equation 
( 2 5 )  . When the  product  (x2 + 9)  1’45 
i s  formed  and plot ted  against  X, the  
curve w i l l  approach a constant  ampli- 
tude  osci l la t ion w i t h  increasing  x. 
The upper  and  lower bounds of  the  
Gmax o sc i l l a t ion ,  and hn, which are   are   easi ly   proport ional  measured from t o  b y  “Grnox -Grn,n 

the   f igure.  Curves  of bx and 
m n / h x  as  functions  of a i  a re  
presented on f igures  1 and 2 f o r  a range of  values o f  the  spin  parameter v.  
To a id   in   interpolat ion,   the   parameters   are   a lso  presented on f igures  3 and 4 
as functions  of v for   several   values  of ai. Having hx, %in,  and 
equation (47),  one can  determine  the  envelope  curves  of  the  physical  variable 
u. Invoking  equations  (21) and (24)  casts  equation (47) i n   t h e  form 

( x 2 + i ? Y 4 <  

Sketch ( b )  

-~ ‘An apparent  contradiction w i t h  a r e s u l t  of  reference 3 should  be 
resolved  here. It i s  indicated  in  reference 3 that   the   osci l la t ion  f requency 
f o r  small ‘5% may not  be  given  correctly  by  the  linear  theory  except  in a 
certain  special   case.  In contrast ,   equation (46) ind ica tes   tha t  as ai  -f 0 
the  l inear   theory  does  give  the  correct   resul t ,  f o r  as UT -f 0 the  f irst  
factor   in   equat ion (46) approaches  unity  leaving  the  second  factor,  the 
l inear   theory  resul t ,   to   descr ibe  the  f requency.  The contradi.ction i s  
resolved, however, when it i s  noted  that   the  problem  under  study,  wherein  the 
body’s  axis of  spin i s  init ially  f ixed  with  respect  to  space-fixed  coordi-  
na t e s   ( i . e .  , no wobble) i s  just   the  special   case  noted  in  reference 3 f o r  
which the  l inear   theory  does  in   fact   g ive  the  correct   resul t   for   f requency as 
a i  4 0. 

11 
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Figure 2.- Variation of the  parameter wn/kx wi th   i n i t i a l   i nc l ina t ion  for several   values 
of  the  spin  parameter v .  
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0 2 4 6 8 I O  12 14 I 6  18 20  
Spin parameter, Y 

Figure 3.- Variation of the parameter Gmax with the spin parameter v for  several values of 
the initial inclination ui. 

1.2 

1.0 

.8 

.6 

.4  

.2 

0 2 4 6 8 I O  12 14 16 18 2 0  
Spin  parameter, v 

Figure 4.- Variation of the parameter kn/& with the spin parameter v for  Several 
values of the initial. inclination ui. 
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Finally,  the  expedient  adopted  in  reference 1 t o  extend  the  appl icabi l i ty  of 
t he   r e su l t s  may be adopted  here as w e l l .  The coordinate x i s  re la ted  t o  
dynamic pressure  through  equations (14) and (20), namely 

x = dQ/G (49) 

When equation (49) i s  subst i tuted  in   equat ions (48) the  form agrees ( f o r  
negl igible  aerodynamic damping and tanh nv/2 z 1) with  the  asymptotic form 
given  in  reference 7 f o r  the  case  of small ai .  "he r e s u l t  of  reference 7, 
a more general one than   tha t  of  reference 2, i s  independent  of  assumptions 
concerning  flight-path  angle o r  f l i g h t  speed.  Hence, i n   m i t e  of  t he   r e s t r i c -  
tions  regarding  these  quantities  underlying  the 
( y  = yi,  V = V i ) ,  the  equations  should  yield an  
asymptotic  behavior even when V and y are   not  
x2 in  equations (48) by K ~ Q / Q ~ ,  one replaces 
expression  than  equation (14).  

deveiopmeni  of  equations (48) 
accurate  representation  of  the 
constant i f ,  af ter   replacing 
Q/Qi by a more precise 

Envelope  curves f o r  slllall Y.- For small t o  moderate  values of Y 
( i . e . ,  72 << x2),  equations (48) take  the form 

( tan  0/2)max env = ( 5Oa) 
tan  ai/2 

Consider t he  maximum envelope  and now l e t  v be  identically  zero.  The 
resu l t ing  motion i s  planar; l e t   the   angle   o f   a t tack   for   p lanar  motion  be 
designated  by  the symbol a. Thus 

This i s  the  envelope  curve  for a nonspinning body which enters   the atmosphere 
a t  the   i n i t i a l ly   f i xed   i nc l ina t ion  ai. The r e s u l t  checks  equation ( 3 0 )  of 
reference 1. The ratio  of  equations (5Oa) and (51) fo r   t he  same i n i t i a l  
incl inat ion ( a i  = ai) gives 



A s  w i l l  be  evident from f igure 1, hx( ai ,  v) does  not change s igni f icant ly  
fo r  small changes i n  Y. Hence, the  ra t io   involving bx in  equation ( 5 2 )  
i s  essent ia l ly   un i ty .  The r e s u l t  shows t h a t   f o r  small v, t he  envelope  curve 
of  the  spinning body is  increased  over that  of the  nonspinning body by a 
constant  factor  dependent  only on v. This i s  the  result reported  in 
reference 1 which genera l izes   to   l a rge   inc l ina t ions  a pr'ior resu l t   g iven   in  
reference 2. 

- 

DISCUSSION 

Results  of  the  analysis w i l l  be   discussed  as   they  apply  in   par t icular   to  
the  motions  of planetary probe vehicles .   In   addi t ion,   their   accuracy w i l l  be 
indicated  in  the form  of  comparisons  with resul ts   obtained by  numerical 
integrations of the  exact  equations  of  motion. 

Consider f i r s t  the  re la t ionship between the maximum envelope of  the 
resultant  angle  of  at tack f o r  a spinning body  and the  envelope f o r  a nonspin- 
ning body. Equation ( 5 2 )  shows t h i s  re la t ionship t o  be  independent of  the 
coordinate  x, and  hence  of the  body's aerodynamic charac te r i s t ics ,  so long 
as  the  square of the  modified  spin  parameter i s  much less  than  the  square  of 
the  coordinate (3 << x2) .  The r e su l t s  of  reference 1 can  be used t o  show 
tha t  x generally becomes very  large  before  the aerodynamic  and heating 
loads  reach  large  fractions of  t h e i r  maximum values. Over t h e   l a t t e r   p o r t i o n  
of the  t ra jectory,   the   port ion of prime in te res t ,   the   inequal i ty  w i l l  hold; 
hence it i s  appropriate t o  use  equation (32) t o  i l l u s t r a t e   t h e   e f f e c t s  of 
spin.  The resul ts   are   presented on f igure 5 f o r  several  values of  t h e   i n i t i a l  

7 

6 

5 

4 

3 

2 

' I  

Spin parameter, Y 

Figure 5.- Effect   of   spin on the  maximum envelope  of  the  resultant angle of   a t tack .  
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incl inat ion.  They give a useful measure  of the   pena l ty   fac tor   a t tached   to  
spin-s tabi l izat ion,  namely, a widening  of  the  angle-of-attack  envelope beyond 
that  of  the  nonspinning body. The curve shown f o r  small i n i t i a l  angles 
(oi --* 0) i s  ident ica l   to   the   resu l t   p resented   in   re fe rence  2; the   penal ty  
fac tor ,  which increases   essent ia l ly  as v1I2, is  seen t o  be a maximum f o r   t h i s  
case. For larger   values   of   the   ini t ia l   angle ,   the   penal ty   factor  fa l ls  o f f  
from t h i s  curve e s sen t i a l ly  as COS O i / 2 .  

Now consider  the  relationship between the minimum and maximum envelopes 
for  the  spinning body. Forming the  r a t i o  ( tan  a/2),in env/(tan (5/2),, 
one notes from equations (48) t h a t  it i s  j u s t   t h e   r a t i o  m n (  oi, v ) / b x (  U i , V )  , 
which already  has  been  plotted as f igures  2 and 4. The l a t t e r   f i g u r e  shows 
tha t   t he  r a t i o  rapidly  approaches  unity  with  increasing v, essen t i a l ly  as 
tanh n5/2. The foregoing  results  suggest  the  following  description of the 
motion: The angle (5 i n   e f f e c t   t r a c e s   t h e  movement of the  body nose  about 
the   ve loc i ty   vec tor .   In i t ia l ly ,  (5 i s  f ixed  in   value and the  plane  containing 
(5 i s  f ixed  in   incl inat ion,   but  as the body penetrates  deeper  into  the atmos- 
phere (5 begins  to  diminish  while  the IS plane  begins  to  rotate  about Z. 
Thus an  observer on the  Z axis   sees   the body  nose t race  out  a diminishing 
s p i r a l .  The amplitude o f  successive  turns  of  the  spiral  diminishes  in 
accordance  with  the  convergence  factor  (x2 + i2)-1’4. For small values of the 
spin  parameter v the  motion i s  nearly  planar,  so t ha t   t he   sp i r a l   has  a la rge  
eccen t r i c i ty   ( i . e . ,  Q n / h x  + 0) . Larger  values  of u cause   the   sp i ra l   to  
open out so tha t  each tu rn  becomes near ly   c i rcu lar  ( i . e . ,  % i n / b x  --* 1). 
Here, the merging  of the  envelopes means that  the  envelope  curve  i tself  
becomes the  actual  angle-of-attack  history.  The e f fec t  of increasing a iy  
f o r  a fixed  value of  u, i s  to   g ive   t he   sp i r a l  a greater   eccentr ic i ty;  
a l ternat ively,   larger   values  of  spin  ra te   are   required t o  make the   tu rns  
c i rcu lar  as t h e   i n i t i a l   a n g l e  i s  increased. 

Results o f  the  analysis ,  shown i n   t h e  form of  var ia t ion  of the   resu l tan t  
angle-of-attack  envelopes  with  stagnation-point  heating  rate,  are compared i n  
figure 6 with  results  obtained  by  numerical methods. The l a t t e r   r e s u l t s ,   i n  
which no approximations were made ei ther   to   the  equat ions  of  motion or t o  the  
aerodynamic forces and moments, were obtained from the  equations,   entry con- 
d i t ions ,  and vehicle and planetary  propert ies   given  in   reference 8; the 
resu l t s   a re   cons idered   i l lus t ra t ive   o f   those   an t ic ipa ted   for  a Mars entry.  
For the   ana ly t ic   resu l t s ,   the  magnitude C m x  of  the aerodynamic restoring- 
moment coeff ic ient  had t o  be specif ied  in   order   to   re la te   the  coordinate  x 
t o  aerodynamic hea t ing   ra te   in   the  manner indicated  in   reference 1. The value 
o f  CmmX w a s  chosen  such tha t   t he   a r ea  under a half-cycle  of  the  approxi- 
mating sine  function  curve  equalled  that under the  experimentally  determined 
pitching-moment  curve f o r  the  vehicle  studied  in  reference 8 .  The values 
used for  Cmmax and those  for  other  physical   properties of  the  vehicle  are 
given  here  for  reference ( cf  . , also  sketch  (c)  ) : 

CmmX = -0.162 

A = 8.296 f t 2  

I,? = 2.8  lb-ft-sec2 

16 





Agreement  between  numerically  and  analytically  determined  results  for  the 
angle-of-attack  envelopes  is  seen  to  be  satisfactory.  Note  that  the  maximum 
and  minimum  envelopes  coincide  for  the  conditions  chosen  for  figure 6 ( b ) .  In 
this  case,  the  envelope  curves  shown  represent  actual  angle-of-attack 
histories. 

Additional  comparisons  are  made  in  figure 7 which  shows  the  effect  of 
spin  rate  on  the  maximum  envelope  of  resultant  angle  of  attack  at  the  point 

0 I 2 3 4 5 6 7 8 9 10 
Spin r a t e .  p , ,  radlsec 

Figure 7.- Ef fec t  o f  spin on the  maxilrluul envelope o f  the  resul tant   angle   of   a t tack;   evaluated 
a t  point  on a Mars e n t r y   t r a j e c t o r y  where s tagnat ion-point   heat ing  ra te  i s  maximum. 

in  the  trajectory  where  stagnation-point  heating  rate  is  maximum.  Satisfac- 
tory  agreement  between  analytical  and  numerical  results  is  indicated  over  the 
entire  range  chosen for the  spin  parameter. 

CONCLUDING RENAFKS 

An analysis  has  been  made  of  the  angle-of-attack  history  of  a  spinning 
body  which  enters  a  planetary  atmosphere  at  an  arbitrarily  la,rge  inclination 
to  the  flight  path. An asymptotic  solution  for  the  resultant  angle  of  attack 
was  derived  in  a  form  that  illustrates  its  functional  dependence on vehicle 
and  planetary  properties.  The  solution  applies  to any axially  symmetric body 
having  an  aerodynamic  restoring-moment  coefficient  proportional  to  the  sine 
of the  resultant  angle of attack.  The  solution  was  found  to  yield  results  in 
satisfactory  agreement  with  results  obtained  from  numerical  integrations  of 
the  exact  equations of  motion. 

Ames  Research  Center. 
National  Aeronautics  and  Space  Administration 

Moffett  Field,  Calif.,  July 14, 1964 
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